Location of glycine mutations within a bacterial collagen protein affects degree of disruption of triple-helix folding and conformation.

نویسندگان

  • Haiming Cheng
  • Shayan Rashid
  • Zhuoxin Yu
  • Ayumi Yoshizumi
  • Eileen Hwang
  • Barbara Brodsky
چکیده

The hereditary bone disorder osteogenesis imperfecta is often caused by missense mutations in type I collagen that change one Gly residue to a larger residue and that break the typical (Gly-Xaa-Yaa)(n) sequence pattern. Site-directed mutagenesis in a recombinant bacterial collagen system was used to explore the effects of the Gly mutation position and of the identity of the residue replacing Gly in a homogeneous collagen molecular population. Homotrimeric bacterial collagen proteins with a Gly-to-Arg or Gly-to-Ser replacement formed stable triple-helix molecules with a reproducible 2 °C decrease in stability. All Gly replacements led to a significant delay in triple-helix folding, but a more dramatic delay was observed when the mutation was located near the N terminus of the triple-helix domain. This highly disruptive mutation, close to the globular N-terminal trimerization domain where folding is initiated, is likely to interfere with triple-helix nucleation. A positional effect of mutations was also suggested by trypsin sensitivity for a Gly-to-Arg replacement close to the triple-helix N terminus but not for the same replacement near the center of the molecule. The significant impact of the location of a mutation on triple-helix folding and conformation could relate to the severe consequences of mutations located near the C terminus of type I and type III collagens, where trimerization occurs and triple-helix folding is initiated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Folding delay and structural perturbations caused by type IV collagen natural interruptions and nearby Gly missense mutations.

The standard collagen triple helix requires Gly as every third residue in the amino acid sequence, yet all nonfibrillar collagens contain sites where this repeating pattern is interrupted. To explore the effects of such natural interruptions on the triple helix, a 4- or 15-residue sequence from human basement membrane type IV collagen was introduced between (Gly-Xaa-Yaa)(n) domains within a rec...

متن کامل

Osteogenesis imperfecta mutations lead to local tropocollagen unfolding and disruption of H-bond network

Osteogenesis imperfecta (OI), also known as ‘‘brittle bone disease’’, is a rare genetic disorder of collagen tissues characterized by brittle bones and, in severe cases, prenatal death. Even though the macroscale consequences of the disease are well known, the effects of the mutations on the folding of collagen triple helix remain largely unknown. In this work we carry out metadynamics molecula...

متن کامل

Osteogenesis imperfecta missense mutations in collagen: structural consequences of a glycine to alanine replacement at a highly charged site.

Glycine is required as every third residue in the collagen triple helix, and a missense mutation leading to the replacement of even one Gly in the repeating (Gly-Xaa-Yaa)(n) sequence with a larger residue leads to a pathological condition. Gly to Ala missense mutations are highly underrepresented in osteogenesis imperfecta (OI) and other collagen diseases, suggesting that the smallest replaceme...

متن کامل

Osteogenesis imperfecta model peptides: incorporation of residues replacing Gly within a triple helix achieved by renucleation and local flexibility.

Missense mutations, which replace one Gly with a larger residue in the repeating sequence of the type I collagen triple helix, lead to the hereditary bone disorder osteogenesis imperfecta (OI). Previous studies suggest that these mutations may interfere with triple-helix folding. NMR was used to investigate triple-helix formation in a series of model peptides where the residue replacing Gly, as...

متن کامل

Transformation of the mechanism of triple-helix peptide folding in the absence of a C-terminal nucleation domain and its implications for mutations in collagen disorders.

Folding abnormalities of the triple helix have been demonstrated in collagen diseases such as osteogenesis imperfecta in which the mutation leads to the substitution of a single Gly in the (Gly-X-Y)n sequence pattern by a larger residue. Model peptides can be used to clarify the details of normal collagen folding and the consequences of the interruption of that folding by a Gly substitution. NM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 3  شماره 

صفحات  -

تاریخ انتشار 2011